Week6: TMO: Transparent Memory Offloading in Data Centers

When using SSDs as a memory tier, how does TMO prevent them from being worn out
when used for offloading memory?

When considering offloading, what are the aspects that TMO has considered and what
aspects TMO can do better? Considering the following aspects: the time to offload, the
amount of data to offload, what data to offload.

How does TMO perform memory offloading to compressed memory versus SSD, and under
what conditions does it choose between the two?

What are the disadvantages of implementing Senpai in userspace? Can you think of any
scenarios in which a kernel space implementation of Senpai would be more performant?

WeekS5: Practical, transparent operating system support for superpages

It is known that x86 has a limited number of superpage TLB entries in the per-core TLB
structure. Suppose superpages were used pervasively throughout an application, what

would be the downside of such an approach, and for what kind of applications? Think in
terms of reduced entries available in the TLB if only superpages are used, and how the
working set of an application interacts with TLB usage.

Consider the scenario in which a superpage is read from disk and only a small fraction of
it is modified. Propose a system that would be able to only write the necessary base
pages to disk without having to demote the superpage.

Consider a case where the system dram is not enough and you have to swap. What is
the performance impact of superpages on swap? And the impact on space efficiency?
How would you mitigate these issues caused by superpages?

Week4: ghOSt: Fast & Flexible User-Space Delegation of Linux Scheduling

List some disadvantages of ghOSt’s delegated scheduling model (i.e., offloading
decisions to the user space ghOSt agent). Explain how these limitations can be
addressed by implementing all of the scheduling logic within BPF programs instead.
How does ghOSt work help minimize system downtime during scheduler updates and
rollbacks? How does ghOSt ensure fault tolerance when an agent fails or a policy
malfucntions?

Why is eBPF not sufficient to implement a flexible scheduling policy here? How does
ghOSt overcome the limitations while still leveraging the eBPF? In redesigning or
modifying eBPF, what changes will you perform to offload the whole ghOSt logic into the
kernel and what can be the tradeoffs?

How is isolation achieved between different applications using ghOSt to write scheduling
policies?



Week 3: The Linux Scheduler: A Decade of Wasted Cores

Issue: Choosing a process that is asleep for a long time

Example: A is a CPU-bound process, B is a IO-bound process and is asleep for 10
seconds. When B wakes up, its vruntime is 10 seconds behind A’'s vruntime

B may end up monopolizing the CPU for the next 10 seconds while it catches up,
effectively starving A. Q. Will this situation occur?

Comment on whether CFS is considered a work-conserving scheduler. Explain an
example scenario of thread scheduling where the behavior of a work-conserving and
non-work-conserving scheduler will differ.

Suppose there is a scheduler which enabled full preemption like Linux and
another scheduler with partial preemption only (user threads cannot preempt each
other). Is the preemptable kernel always better than the non-preemptable one? If
not, explain a case where it is actually not (The workload consist of a load injector
and workers that handle requests. Load injector got preempted)

Explain one of the bugs described in the paper and why it affects the overall
performance of the Linux scheduler. Can you think of any potential issues with the
proposed fix for the bug? If not, explain why the solution is optimal.

Week 2: Light-Weight Contexts: An OS Abstraction for Safety and Performance

What is the difference between IwC and process? Why is creating IwC much cheaper
than forking a process? How would you compare the cost of creating IwC against
creating other light weight asynchronous execution units, e.g., C++ coroutines?

Why does switching between IwCs faster than switching between kernel threads?
How do snapshots and rollbacks work for IwC? Is it possible to reuse the original IwC
instead of recreating the snapshot every time to reduce the overhead?



